If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35z^2-102z-32=0
a = 35; b = -102; c = -32;
Δ = b2-4ac
Δ = -1022-4·35·(-32)
Δ = 14884
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14884}=122$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-102)-122}{2*35}=\frac{-20}{70} =-2/7 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-102)+122}{2*35}=\frac{224}{70} =3+1/5 $
| 2988=36(p+40) | | 4y+48=8(y+8) | | 2x-3(x+10)+1=-1+2(x+10) | | x/180=77 | | 3j+5+1=15 | | 1/4x+5=11 | | (-2/3)w-4/9)=-4/5 | | 7/4|3j+5+1=15 | | 2x+7+432x=90 | | 0=-10x^2+400x-310 | | 12x+3=9×+9 | | 4x-5=2+3(x-3)4x-5=2+3(x-3) | | 0=x^2-40x+31 | | 1/x+2/x-1=3 | | 10-(3z-8)=4-4z | | x3+12x2+27x+40=0 | | 13=-9t-5 | | 5(1x-3)+8=9 | | 110x+30=180 | | 8(c-14)=-48 | | G(x)=-3+6.9 | | 2-5n=7 | | 5x-35=-10x | | 13x+21=13x | | 6=5p-4p+2.4 | | (5x+19)=50 | | 8(v+4)-2v=2(3v+2)-5 | | -3(x+2)-5=x-7-4(x+1) | | 1/4t-1+1/2t+7=16+(-10) | | 3+2x-65=2x-5+3x | | 100=4n^2 | | 8-0.25x=1+0.5x+1 |